
CS 329A, Handout #15Nayak

Example: DS-1 bus communication

PDE SRU PDU GDE PASM DSEU PEPE

1553 bus

BC
Flight

Computer

Commands

Data

• Some of the clauses describing bus communication

C1: ¬ nci ∨ ¬ a ∨ nco

C2: ¬ ia ∨ nco
C3: ¬ ok ∨ a

C4: ¬ rf ∨ ia

C5: ¬ uf ∨ ia
C6: ¬ ok ∨ ¬ rf

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf
C9: ¬ a ∨ ¬ ia

BC health: ok, rf, uf
No input cmd: nci

BC activity: a, ia
No output cmd: nco

CS 329A, Handout #15Nayak

LTMS inference

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

true

C10: ok

true

false true

false true

false

CS 329A, Handout #15Nayak

Deleting C10 , adding C11

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

true

true

false true

false true

false
true

false

false
true

false

true

C11: rf

Reprop.

CS 329A, Handout #15Nayak

Summary of problem

• Problem: Unnecessary repropagation during a context switch

• Excessive repropagation can be a sigificant problem in practice

Data from 387 distinct context switches on
DS-1 theory containing 12,693 clauses

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 > 110

Percent extra label changes made by LTMS

Number

Ranges from 110% to
660% more label
changes than necessary

CS 329A, Handout #15Nayak

Cause of problem

• To guarantee well-founded support, the LTMS context switch
algorithm is overly conservative
– switching a context by deleting clause D and adding clause A

• Previous solution: Use an ATMS
– context switch requires no label propagation

– labeling algorithm is exponential in time and space

• New solution: Use an ITMS

D : in
A : out

D : out
A : out

D : out
A : in

CS 329A, Handout #15Nayak

ITMS algorithm intuitions

• Resupport propositions during clause deletion
– if resupport is possible, proposition’s consequences are not touched

– must guarantee well-founded support

• …but resupport available only after clause addition
– so add new clause and propagate before deleting old clause

• …but added clause is often a conflict and propagation
terminates
– develop a new algorithm to propagate through conflicts

CS 329A, Handout #15Nayak

Top-level ITMS algorithm

procedure switch-context(D, A, Σ) // delete D, add A to Σ
Add A to Σ and propagate any unit clauses

if conflicting clause detected then

while there is a conflict that can be propagated do
Propagate through the conflict

Use propagated label to resupport propositions (if possible)

endwhile

endif
Delete D from Σ
Propagate any unit clauses

end switch-context

CS 329A, Handout #15Nayak

Resupporting a proposition

• Clause R can resupport proposition p which is currently
supported by clause C if
– p occurs with the same sign in R and C

– all other literals in R are false

– resulting support is well-founded

• Guaranteeing well-founded support is linear in the size of Σ
– defeats the very purpose of using an ITMS

C: p p

S: ¬ p∨ q
q

R: p∨ ¬ q

true true C: p p

S: ¬ p∨ q
q

R: p∨ ¬ q

true true

Non-wellfounded
resupport

CS 329A, Handout #15Nayak

Propagation numbers

• Assign a propagation number to each supported proposition

– proposition’s propagation number is greater than propagation
number of other propositions occurring in supporting clause

⇒ If p’s propagation number is greater than q’s propagation
number, then q cannot depend on p

• Resupport proposition p with clause R only if p’s propagation
number is greater than propagation number of other literals in R
– sufficient, but not necessary, condition for resupport

C1: r r C2: ¬ r∨ q q
true:2

C3: ¬ q∨ ¬ p p
false: 3true:1

Propagation number increases monotically

CS 329A, Handout #15Nayak

Resupporting nco

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C6: ¬ ok ∨ ¬ rf

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

true:4

C11: rf

true:1

false:2 true:2

false:3 true:5

false:2
true:1

C10: ok

true:2

CS 329A, Handout #15Nayak

Propagating through a conflict

• Switch the label of a proposition p in a conflict C
– and let p’s support be C

• C must provide p with a well-founded support
– p’s propagation number must be greater than or equal to the

propagation number of other literals in C

• Resupport other propositions using clauses in which p occurs

• Prevent infinite loops by changing a proposition’s label at
most once

C: ¬ q ∨ ¬ p

q

p
true:2

true:1

C: ¬ q ∨ ¬ p

q

p

false:2
true:1

true:2

CS 329A, Handout #15Nayak

C10: ok

Propagating through C4

C7: ¬ ok ∨ ¬ uf

C8: ¬ rf ∨ ¬ uf

C3: ¬ ok ∨ a

C4: ¬ rf ∨ ia

C9: ¬ a ∨ ¬ ia

C2: ¬ ia ∨ nco

C1: ¬ nci ∨ ¬ a ∨ nco

uf

ok

rf

a

ia

nci

nco

true:4

C11: rf

true

true:1

false:2 true:2

false:3 true:5

false:2
true:1

C6: ¬ ok ∨ ¬ rf

CS 329A, Handout #15Nayak

ITMS significantly decreases extra
label changes

Data from 387 context switches on
DS-1 theory containing 12,693 clauses

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80 90 100 110 > 110

Percent extra label changes

Number

LTMS
ITMS

Ranges from 110% to
660% more label
changes than necessary

CS 329A, Handout #15Nayak

Comparing the ITMS to the LTMS

0

50

100

150

200

10 20 30 40 50 60 70 80 90 100 110

Ratio of ITMS label changes to LTMS label changes (in percent)

Number

CS 329A, Handout #15Nayak

Conclusions

• The ITMS is an aggressive incremental TMS that optimizes
context switching

– clause addition done before clause deletion

– novel resupport algorithm using propagation numbers

– novel algorithm to propagate through conflicts

• Dramatic reduction in worst-case performance compared to a
traditional LTMS

• Critical for achieving adequate performance in Livingstone’s
real-time propositional reasoning execution kernel

